,微软亚洲研究院日前提出了一种使用GPT-4 模型来控制工业场景的空气调节系统 的方法,据称“该方法仅需少量示例样本,就能在成本和效率上优于传统工控系统”。
微软表示,对于工业场景,传统的工控软件在处理异构任务、样本低效以及适应新场景等方面需要大量时间及预算成本,而使用预训练的大模型控制相关工控设备,可以保证在高准确度的情况下,降低相关部署成本。
据悉,微软使用GPT-4 模型,并创造了一个虚拟空调系统环境进行实验,开发了一种可将基础模型用于工业控制但“无需过多训练”的方法,最终得到了“积极的结果”。
微软同时表示,该研究的目标是探索直接使用预训练大模型进行工业控制任务的潜力,以及设计解决“技术债务”较低的工业控制任务的方法,从而逐步取代容错率较高的工业环境。
目前相关研究成果已经在ArXiv上发布,感兴趣的IT之家小伙伴们可以进行相关了解。
广告声明:文内含有的对外跳转链接,用于传递更多信息,节省甄选时间,结果仅供参考,IT之家所有文章均包含本声明。
免责声明:该文章系本站转载,旨在为读者提供更多信息资讯。所涉内容不构成投资、消费建议,仅供读者参考。